Staged cluster transformers for intracranial aneurysms segmentation from structure fused 3D MRA

Author:

Guo Lilin1ORCID,Liang Yu1,Guo Ruichao2,Cao Zhijian3,Ye Jianming4,Lai Xiaobo1ORCID

Affiliation:

1. School of Medical Technology and Information Engineering Zhejiang Chinese Medical University Hangzhou China

2. School of Electronic Information and Electrical Engineering Shanghai Jiaotong University Shanghai China

3. Department of Radiology The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine) Hangzhou China

4. The First Affiliated Hospital Gannan Medical University Ganzhou China

Abstract

AbstractIntracranial aneurysms (IAs) manifest as atypical dilatation within the intracranial arterial structures, the rupture of which accounts for high mortality and morbidity rates. Current clinical protocols require radiologists to manually annotate IAs on Magnetic Resonance Angiography (MRA) images, which is inherently subjective and time‐consuming. Given these limitations, there is an urgent need to explore methods for automated and accurate segmentation of IAs from MRA images. In particular, recent years have witnessed the proliferation of sophisticated computational techniques, with deep learning algorithms—especially the 3D U‐Net and its derivatives—gaining prominence in segmentation works. Nevertheless, convolutional neural network (CNN)‐based models have an inherent limitation in capturing long‐range spatial dependencies, which inadvertently compromises the retention of global features critical for segmentation. In response to this challenge, we introduce an avant‐garde architectural design, dubbed staged cluster transformers (SCTR), which incorporates cluster mechanism into vision transformers to perform volumetric MRA image segmentation. In addition to the MRA clustering branch, the spatially aligned brain Magnetic Resonance Imaging (MRI) representation branch is also combined to extract the structural features and assist the network in learning richer contextual and boundary information for accurate voxel prediction. For validation, we utilized both a publicly available challenge dataset and an internal clinical dataset in this study. Our proposed model achieves dice similarity coefficients (DSC) of 0.5587 and 0.8110 on these two datasets, respectively, outperforming other state‐of‐the‐art approaches. The results suggest that SCTR is a promising method for automatic segmentation of IAs. Our code is available at https://github.com/guolilin/SCTR.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3