To flame‐seal or not to flame‐seal NMR tubes: The role of liquid–vapor equilibria on the accuracy of variable temperature experiments

Author:

Morrelli Derek12,Maitra Santanu1,Krishnan V. V.13ORCID

Affiliation:

1. Department of Chemistry and Biochemistry California State University Fresno Fresno California USA

2. Department of Chemistry Southwestern Oregon Community College Coos Bay Oregon USA

3. Department of Pathology and Molecular Medicine University of California Davis School of Medicine Sacramento California USA

Abstract

AbstractIn NMR experiments, it is crucial to control the temperature of the sample, especially when measuring kinetic parameters. Usually, it takes 2 to 5 min for the temperature of the sample inside the NMR probe to stabilize at a fixed value set for the experiment. However, the NMR sample tubes are flame‐sealed in some cases, such as when working with volatile solvents, atmosphere‐sensitive samples, or calibration samples for long‐term use. When these samples are placed inside the NMR probe, the spectrometer controls the lower portion (liquid phase) of the NMR sample tube with a gas flow at a fixed temperature, while the upper portion (vapor) is at ambient temperature. This probe design creates a unique temperature gradient across the sample, leading to vapor pressure build‐up, particularly inside a sealed NMR tube. By analyzing the temperature‐dependent spectral line shape changes of a chemical exchange process, we report that under standard experimental conditions, the sample temperature can take up to 2 to 3 h (instead of minutes) to stabilize. The time scale of the liquid–vapor equilibrium process is much slower, with a half‐life exceeding 35 min, in contrast to the 2‐min duration required to obtain each spectrum. This phenomenon is exclusively due to the liquid–vapor equilibrium process of the flame‐sealed NMR tube and is not observable otherwise.

Funder

National Science Foundation

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3