Diagnosis of chronic B‐cell lymphoproliferative disease in peripheral blood = how machine learning may help to the interpretation of flow cytometry data

Author:

Gross Zofia1,Veyrat‐Masson Richard2,Grange Béatrice34,Huet Sarah34,Verney Aurélie4,Traverse‐Glehen Alexandra56,Ruminy Philippe6,Baseggio Lucile34ORCID

Affiliation:

1. Service clinique d'hématologie Groupement Hospitalier Lyon‐Sud/Hospices Civils de Lyon Pierre‐Bénite France

2. Laboratoire d'hématologie CHU ESTAING Clermont Ferrand France

3. Laboratoire d'hématologie spécialisée Groupement Hospitalier Lyon‐Sud/Hospices Civils de Lyon Pierre‐Bénite France

4. Université Claude Bernard Lyon 1 Centre International de Recherche en Infectiologie (CIRI) INSERM U1111 ‐ CNRS UMR5308 Lyon France

5. Service d'anatomie‐pathologique Groupement Hospitalier Lyon‐Sud/Hospices Civils de Lyon Pierre‐Bénite France

6. INSERM U1245 Centre Henri Becquerel UNIROUEN University of Normandie Rouen France

Abstract

AbstractFlow cytometry (FCM) has become a method of choice for immunologic characterization of chronic lymphoproliferative disease (CLPD). To reduce the potential subjectivities of FCM data interpretation, we developed a machine learning random forest algorithm (RF) allowing unsupervised analysis. This assay relies on 16 parameters obtained from our FCM screening panel, routinely used in the exploration of peripheral blood (PB) samples (mean fluorescence intensity values (MFI) of CD19, CD45, CD5, CD20, CD200, CD23, HLA‐DR, CD10 in CD19‐gated B cells, ratio of kappa/Lambda, and different ratios of MFI B‐cells/T‐cells [CD20, CD200, CD23]). The RF algorithm was trained and validated on a large cohort of more than 300 annotated different CLPD cases (chronic B‐cell leukemia, mantle cell lymphoma, marginal zone lymphoma, follicular lymphoma, splenic red pulp lymphoma, hairy cell leukemia) and non‐tumoral selected from PB samples. The RF algorithm was able to differentiate tumoral from non‐tumoral B‐cells in all cases and to propose a correct CLPD classification in more than 90% of cases. In conclusion the RF algorithm could be proposed as an interesting help to FCM data interpretation allowing a first B‐cells CLPD diagnostic hypothesis and/or to guide the management of complementary analysis (additional immunologic markers and genetic).

Publisher

Wiley

Reference17 articles.

1. SwerdlowS CampoE Lee HarrisN et al.Mature B‐cell neoplasms. In:WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (revised fourth edition) pp.215‐342.IARC;2017.

2. The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee

3. 2006 Bethesda International Consensus Conference on Flow Cytometric Immunophenotyping of Hematolymphoid Neoplasia

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3