Real‐time small bowel visualization quality assessment in wireless capsule endoscopy images using different lightweight embeddable models

Author:

Sadeghi Vahid1,Mehridehnavi Alireza1ORCID,Sanahmadi Yasaman1,Rakhshani Sajed2,Omrani Mina3,Sharifi Mohsen4

Affiliation:

1. Department of Bioelectrics and Biomedical Engineering School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences Isfahan Iran

2. Medical Image & Signal Processing Research Center, School of Advanced Technologies in Medicine Isfahan University of Medical Sciences Isfahan Iran

3. Department of Mathematics and Computer Science Amirkabir University of Technology Tehran Iran

4. Gastroenterologist & Hepatologist Fellowship of Endosonography Isfahan University of Medical Sciences Isfahan Iran

Abstract

AbstractWireless capsule endoscopy (WCE) captures huge number of images, but only a fraction are medically relevant. We propose automated real‐time small bowel visualization quality (SBVQ) assessment to eliminate transmission of irrelevant frames. Our aim is to design lightweight color‐based models for segmenting clean and contaminated regions with minimal parameters, short training, and fast inference, suitable for WCE hardware integration. Using the Kvasir Capsule endoscopy dataset, we constructed models based on distinctive color patterns of clean and contaminated regions. While different classifiers have been trained and evaluated, the k‐nearest neighbors (KNNs), multilayer perceptron (MLP), and gradient‐boosted machine (GBM) obtained superior performance (accuracy: 0.87±0.12, Dice similarity score (DSC): 0.87±0.15, intersection over union (IOU): 0.80±0.19). Logistic regression (LR) had the shortest training and inference times. Our models offer simplicity, compactness, and robustness, delivering satisfactory real‐time performance. Evaluation on the SEE‐AI project dataset confirms good generalization capabilities, demonstrating practical solutions for WCE image analysis.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3