Escherichia coli cytosine deaminase: Structural and biotechnological aspects

Author:

Vosough Parisa12,Vafadar Asma12,Naderi Samaneh2,Alashti Shayan Khalili23,Karimi Sara4,Irajie Cambyz25,Savardashtaki Amir26ORCID,Taghizadeh Saeed25

Affiliation:

1. Student Research Committee Shiraz University of Medical Sciences Shiraz Iran

2. Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences Shiraz Iran

3. Epilepsy Research Center Shiraz University of Medical Sciences Shiraz Iran

4. Department of Biotechnology, Faculty of Biological Sciences Alzahra University Tehran Iran

5. Pharmaceutical Science Research Center Shiraz University of Medical Sciences Shiraz Iran

6. Infertility Research Center Shiraz University of Medical Sciences Shiraz Iran

Abstract

AbstractSuicide gene therapy involves introducing viral or bacterial genes into tumor cells, which enables the conversion of a nontoxic prodrug into a toxic‐lethal drug. The application of the bacterial cytosine deaminase (bCD)/5‐fluorocytosine (5‐FC) approach has been beneficial and progressive within the current field of cancer therapy because of the enhanced bystander effect. The basis of this method is the preferential deamination of 5‐FC to 5‐fluorouracil by cancer cells expressing cytosine deaminase (CD), which strongly inhibits DNA synthesis and RNA function, effectively targeting tumor cells. However, the poor binding affinity of toward 5‐FC compared to the natural substrate cytosine and/or inappropriate thermostability limits the clinical applications of this gene therapy approach. Nowadays, many genetic engineering studies have been carried out to solve and improve the activity of this enzyme. In the current review, we intend to discuss the biotechnological aspects of Escherichia coli CD, including its structure, functions, molecular cloning, and protein engineering. We will also explore its relevance in cancer clinical trials. By examining these aspects, we hope to provide a thorough understanding of E. coli CD and its potential applications in cancer therapy.

Publisher

Wiley

Subject

Process Chemistry and Technology,Drug Discovery,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,General Medicine,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3