Parametric cerebral blood flow and arterial transit time mapping using a 3D convolutional neural network

Author:

Kim Donghoon12ORCID,Lipford Megan E.3,He Hongjian4ORCID,Ding Qiuping4,Ivanovic Vladimir5,Lockhart Samuel N.6,Craft Suzanne6,Whitlow Christopher T.3,Jung Youngkyoo123

Affiliation:

1. Department of Biomedical Engineering University of California Davis California USA

2. Department of Radiology University of California Davis California USA

3. Department of Radiology Wake Forest School of Medicine Winston‐Salem North Carolina USA

4. Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science Zhejiang University Zhejiang China

5. Department of Radiology Medical College of Wisconsin Milwaukee Wisconsin USA

6. Department of Internal Medicine Wake Forest School of Medicine Winston‐Salem North Carolina USA

Abstract

PurposeTo reduce the total scan time of multiple postlabeling delay (multi‐PLD) pseudo‐continuous arterial spin labeling (pCASL) by developing a hierarchically structured 3D convolutional neural network (H‐CNN) that estimates the arterial transit time (ATT) and cerebral blow flow (CBF) maps from the reduced number of PLDs as well as averages.MethodsA total of 48 subjects (38 females and 10 males), aged 56–80 years, compromising a training group (n = 45) and a validation group (n = 3) underwent MRI including multi‐PLD pCASL. We proposed an H‐CNN to estimate the ATT and CBF maps using a reduced number of PLDs and a separately reduced number of averages. The proposed method was compared with a conventional nonlinear model fitting method using the mean absolute error (MAE).ResultsThe H‐CNN provided the MAEs of 32.69 ms for ATT and 3.32 mL/100 g/min for CBF estimations using a full data set that contains six PLDs and six averages in the 3 test subjects. The H‐CNN also showed that the smaller number of PLDs can be used to estimate both ATT and CBF without significant discrepancy from the reference (MAEs of 231.45 ms for ATT and 9.80 mL/100 g/min for CBF using three of six PLDs).ConclusionThe proposed machine learning–based ATT and CBF mapping offers substantially reduced scan time of multi‐PLD pCASL.

Funder

National Institutes of Health

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3