Research on the adsorption rule of porous media on supersaturated total dissolved gas

Author:

Wang Chonglin1ORCID,Yuan Youquan1,Feng Jingjie1,Wang Zhenhua1,Wang Yuanming1,Li Ran1

Affiliation:

1. State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu Sichuan China

Abstract

AbstractDischarge of high dams may result in supersaturated total dissolved gas (TDG) in water, which could cause fish that live downstream river to suffer from gas bubble disease. If supersaturated TDG water was taken as a water source for breeding and proliferation stations, farmed fish was confined and may face more severe problems than fish living in the river. Therefore, it is critical to develop strategies to reduce the negative effects of supersaturated TDG. In this research, the adsorption effect of porous media on supersaturated TDG was explored, including biofilter adsorption experiments and previously existing activated carbon adsorption experiments. The experimental results showed that adding porous media to the water effectively accelerated the dissipation of supersaturated TDG, and the adsorption effect was associated with the specific surface area, mass density, and initial TDG saturation. To quantitively evaluate the adsorption effects of the porous media, the porous adsorption coefficient was proposed to express the adsorption rate of porous media on supersaturated TDG. The porous adsorption coefficient was related to the initial TDG saturation and the specific surface area of the porous media. The porous adsorption coefficient increased with increasing the specific surface area and decreasing initial TDG saturation. Based on this, an equation related to the specific surface area, initial TDG saturation, and the porous adsorption coefficient was developed. This equation may be used to evaluate the adsorption effect of porous media on supersaturated TDG. This study could serve as a crucial resource in reducing the adverse impacts of supersaturated TDG.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3