Shaking table test and cumulative deformation evaluation analysis of a tunnel across the hauling sliding surface

Author:

Pai Lifang1ORCID,Wu Honggang2ORCID,Wang Xu1ORCID

Affiliation:

1. Department of Civil Engineering Lanzhou Jiaotong University Lanzhou China

2. Geological Disaster Prevention and Control Science and Technology Innovation Center Department Northwest Research Institute Co., Ltd of C.R.E.C. Lanzhou China

Abstract

AbstractTo explore the cumulative deformation effect of the dynamic response of a tunnel crossing the hauling sliding surface under earthquakes, the shaking table test was conducted in this study. Combined with the numerical calculations, this study proposed magnification of the Arias intensity (MIa) to characterize the overall local deformation damage of the tunnel lining in terms of the deformation characteristics, frequency domain, and energy. Using the time‐domain analysis method, the plastic effect coefficient (PEC) was proposed to characterize the degree of plastic deformation, and the applicability of the seismic cumulative failure effect (SCFE) was discussed. The results show that the low‐frequency component (f1 and f2 ≤ 10 Hz) and the high‐frequency component (f3 and f4 > 10 Hz) acceleration mainly cause global and local deformation of the tunnel lining. The local deformation caused by the high‐frequency wave has an important effect on the seismic damage of the lining. The physical meaning of PEC is more clearly defined than that of the residual strain, and the SCFE of the tunnel lining can also be defined. The SCFE of the tunnel lining includes the elastic deformation effect stage (<0.15g), the elastic–plastic deformation effect stage (0.15g–0.30g), and the plastic deformation effect stage (0.30g–0.40g). This study can provide valuable theoretical and technical support for the construction of traffic tunnels in high‐intensity earthquake areas.

Funder

Natural Science Foundation of Gansu Province

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3