First‐ever satellite tracking of Black Terns (Chlidonias niger): Insights into home range and habitat selection

Author:

McKellar Ann E.12ORCID,Clements Sarah J.34ORCID

Affiliation:

1. Environment and Climate Change Canada Wildlife Research Division Saskatoon Saskatchewan Canada

2. Department of Biology University of Saskatchewan Saskatoon Saskatchewan Canada

3. School of Natural Resources University of Missouri Columbia Missouri USA

4. Department of Wildlife, Fisheries, & Conservation Biology, Nutting Hall University of Maine Orono Maine USA

Abstract

AbstractUnderstanding animal movement across the annual cycle is critical for developing appropriate conservation plans, but the large size and high cost of tracking devices can limit the spatial and temporal resolution at which movement data can be collected, especially for small avian species. Furthermore, for species with low breeding site fidelity, the ability to obtain tracking data from small, archival tags is hindered by low recapture rates. We deployed satellite tracking devices on four adult Black Terns (Chlidonias niger), a declining waterbird with low site fidelity, to examine space use and selection of resources within individual breeding home ranges. We also provide a preliminary assessment of habitat use during fall stopover. We found that home ranges were extensive (mean 283.7 km2) and distances travelled from the nest substantially larger (up to 35 km) than previously thought (~2.5 km). Terns showed selection for wetlands and open water on the breeding grounds, but also showed selection for developed areas. This may reflect humans selecting similar landscape features for recreation and development as terns, and suggests that terns can tolerate the light degree of development (e.g. cottages, boat launches, etc.) within our study area. Despite a small sample size, this is the first study to track individual Black Terns at a high resolution with implications for conservation and wetland management practices relevant to the spatial scales at which habitat is used by the species.

Funder

Environment and Climate Change Canada

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3