Conspecific density and habitat quality affect breeding habitat selection: Support for the social attraction hypothesis

Author:

Swift Rose J.1ORCID,Anteau Michael J.1,Ellis Kristen S.1,Ring Megan M.1,Sherfy Mark H.1,Toy Dustin L.1

Affiliation:

1. U.S. Geological Survey, Northern Prairie Wildlife Research Center Jamestown North Dakota USA

Abstract

AbstractBreeding habitat selection is a critical component of the annual cycle because of its effect on fitness. Multiple theories of habitat selection can be differentiated by their responses to the quantity of habitat, conspecific density, and habitat quality. Here, we use network analysis to understand the characteristics of fine‐scale breeding habitat selected by both immigrant and returning adult piping plovers (Charadrius melodus) to test five hypotheses of habitat selection. Between 2014 and 2019, we recorded 2034 uniquely marked adults breeding at 326 breeding locations with 1240 successive breeding events. Among adults, immigration events (i.e., individuals that moved to a new breeding location) were detected as often as fidelity to the same breeding location. We found support for the social attraction hypothesis for both immigrants and returners, indicating that adult plovers use social cues for settlement decisions. Adult plovers selected habitats with intermediate levels of conspecific density and high habitat quality, as assessed by con‐ and heterospecific nest survival, with no effect from the amount of available habitat. We also simulated the loss of breeding habitat and identified highly connected breeding locations, which occurred mostly on the riverine habitat type, which have important implications for habitat conservation for this listed species. Our results highlight the role of conspecifics at identifying high‐quality breeding habitat regardless of whether individuals return to the same breeding site or immigrate to new areas.

Funder

U.S. Army Corps of Engineers

U.S. Fish and Wildlife Service

U.S. Geological Survey

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3