Electron‐deficient ZnO induced by heterointerface engineering as the dominant active component to boost CO2‐to‐formate conversion

Author:

Qin Qing1,Li Zijian2,Zhang Yingzheng1,Jang Haeseong3,Zhai Li2,Hou Liqiang1,Wei Xiaoqian1,Wang Zhe1,Kim Min Gyu4,Liu Shangguo1,Liu Xien1ORCID

Affiliation:

1. College of Chemical Engineering Qingdao University of Science and Technology Qingdao China

2. Department of Chemistry City University of Hong Kong Hong Kong SAR China

3. Department of Advanced Materials Engineering Chung‐Ang University Anseong‐si Gyeonggi‐do Republic of Korea

4. Beamline Research Division Pohang Accelerator Laboratory (PAL) Pohang Republic of Korea

Abstract

AbstractElectrocatalytic CO2‐to‐formate conversion is considered an economically viable process. In general, Zn‐based nanomaterials are well‐known to be highly efficient electrocatalysts for the conversion of CO2 to CO, but seldom do they exhibit excellent selectivity toward formate. In this article, we demonstrate that a heterointerface catalyst ZnO/ZnSnO3 with nanosheet morphology shows enhanced selectivity with a maximum Faradaic efficiency (FE) of 86% at −0.9 V versus reversible hydrogen electrode and larger current density for the conversion of CO2 to formate than pristine ZnO and ZnSnO3. In particular, the FEs of the C1 products (CO + HCOO) exceed 98% over the potential window. The experimental measurements combined with theoretical calculations revealed that the ZnO in ZnO/ZnSnO3 heterojunction delivers the valence electron depletion and accordingly optimizes Zn d‐band center, which results in moderate Zn–O hybridization of HCOO* and weakened Zn–C hybridization of competing COOH*, thus greatly boosting the HCOOH generation. Our study highlights the importance of charge redistribution in catalysts on the selectivity of electrochemical CO2 reduction.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3