Investigation of physical properties of microalgae‐pectin‐based bio‐composite with addition of pine needle for environmental application

Author:

Munoz‐Cupa Carlos1,Lee Kristine1,Krishnan Anuradha1,Bassi Amarjeet1ORCID

Affiliation:

1. Department of Chemical and Biochemical Engineering Western University London Ontario Canada

Abstract

AbstractPolymers and biopolymers have gained significance due to their applicability and use in industry reducing the negative impact of polymers based on petroleum. A possible solution for the conventional polymer's biodegradability is bio‐composites, which contain natural fibers or aggregates such as microalgae. Hence, microalgae biomass has a promising application to address the biodegradability issue of conventional polymers. In this study, Chlorella vulgaris biomass was mixed with pectin for control samples with glycerol as plasticizer. The mixture microalgae‐pectin‐glycerol, and the addition of pine needles was used to evaluate the tensile strength and compression of the bio‐composite. This bio‐composite showed a higher Young's modulus of 95.66 MPa for blend C2 and a higher strength with 20% of pectin concentration in the mixture. Additionally, the pine needle addition did not have a low effect between the compression results. On the other hand, analysis on elasticity showed that the full recovery of the bio‐composite happened after 10 min in all the blends. Also, the bio‐composite showed a slow release of nitrogen and phosphorous after 5 days of water addition, indicating an effective slow release for blend B for both nutrients. Water uptake capacity and loss of soluble material was studied using pullulan, chitosan, and cetyltrimethylammonium bromide additives. These cationic surfactants demonstrated their potential for reduction of water solubility of the bio‐composite.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3