Pulsed electromagnetic fields used in regenerative medicine: An in vitro study of the skin wound healing proliferative phase

Author:

Bedja‐Iacona Léa1,Scorretti Riccardo12ORCID,Ducrot Marie1,Vollaire Christian1ORCID,Franqueville Laure1ORCID

Affiliation:

1. Ecole Centrale de Lyon, INSA Lyon Universite Claude Bernard Lyon 1, CNRS, Ampère, UMR5005 Ecully France

2. Department of Engineering University of Perugia Perugia Italy

Abstract

AbstractNumerous studies have demonstrated the efficacy of extremely low frequency‐pulsed electromagnetic fields (ELF‐PEMF) in accelerating the wound healing process in vitro and in vivo. Our study focuses specifically on ELF‐PEMF applied with the Magnomega® device and aims to assess their effect during the main stages of the proliferative phase of dermal wound closure, in vitro. Thus, after the characterization of the EMFs delivered by the Magnomega® unit, primary culture of human dermal fibroblasts (HDFs) were exposed, or not for the control culture, to 10–12 and 100 Hz ELF‐PEMF. These parameters are used in clinical practice by physiotherapists in order to enhance healing of dermal lesions in patients. HDFs proliferation was first assessed and revealed an increase in the expression of one of the two genetic markers of cell proliferation tested (PCNA and MKI67), after initial exposure of the cells to 10–12 Hz PEMF. Next, migration of HDFs was investigated by performing scratch assays on HDF layers. The observed wound closure kinetics corroborate the early organization of actin stress fibers that was revealed in the cytoplasm of HDFs exposed to 100 Hz ELF‐PEMF. Also, maturation of HDFs into myofibroblasts was significantly increased in cells exposed to 10–12 or to 100 Hz PEMF. The present study is the first to demonstrate, in vitro, an early stimulation of HDFs, after their exposure to ELF‐PEMF delivered by the Magnomega® device, which could contribute to an acceleration of the wound healing process.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3