The optimal polynomial decay in the extensible Timoshenko system

Author:

Aouadi Moncef1

Affiliation:

1. Ecole Nationale d'Ingénieurs de Bizerte UR 17ES21 Systèmes Dynamiques et Applications Université de Carthage Bizerte Tunisia

Abstract

AbstractIn this paper, we derive the equations that constitute the nonlinear mathematical model of an extensible thermoelastic Timoshenko system. The nonlinear governing equations are derived by applying the Hamilton principle to full von Kármán equations. The model takes account of the effects of extensibility, where the dissipations are entirely contributed by temperature. Based on the semigroups theory, we establish existence and uniqueness of weak and strong solutions to the derived problem. By using a resolvent criterion, developed by Borichev and Tomilov, we prove the optimality of the polynomial decay rate of the considered problem under the condition (65). Moreover, by an approach based on the Gearhart–Herbst–Prüss–Huang theorem, we show the non‐exponential stability of the same problem; but strongly stable by following a result due to Arendt–Batty. In the absence of additional mechanical dissipations, the system is often not highly stable. By adding a damping frictional function to the first equation of the nonlinear derived model with extensibility and using the multiplier method, we show that the solutions decay exponentially if Equation (85) holds.

Publisher

Wiley

Reference49 articles.

1. Pure and Applied Mathematics;Adams R. A.,2003

2. Long‐time behavior for a nonlinear Timoshenko system: thermal damping versus weak damping of variable‐exponents type;Al‐Mahdi A. M.;AIMS Math.,2023

3. New decay results for a viscoelastic‐type Timoshenko system with infinite memory;Al‐Mahdi A. M.;Z. Angew. Math. Phys.,2021

4. Stability to 1‐D thermoelastic Timoshenko beam acting on shear force;Júnior D. S. A.;Z. Angew. Math. Phys.,2014

5. Strain gradient interpretation of size effects;Aifantis E.C.;Int. J. Fract.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3