Convergence to equilibrium for linear parabolic systems coupled by matrix‐valued potentials

Author:

Dobrick Alexander1,Glück Jochen2

Affiliation:

1. Arbeitsbereich Analysis Christian‐Abrechts‐Universität zu Kiel Kiel Germany

2. Fakultät für Mathematik und Naturwissenschaften Bergische Universität Wuppertal Wuppertal Germany

Abstract

AbstractWe consider systems of parabolic linear equations, subject to Neumann boundary conditions on bounded domains in , that are coupled by a matrix‐valued potentialV, and investigate under which conditions each solution to such a system converges to an equilibrium as . While this is clearly a fundamental question about systems of parabolic equations, it has been studied, up to now, only under certain positivity assumptions on the potentialV. Without positivity, Perron–Frobenius theory cannot be applied and the problem is seemingly wide open. In this paper, we address this problem for all potentials that are ‐dissipative for some . While the case can be treated by classical Hilbert space methods, the matter becomes more delicate for . We solve this problem by employing recent spectral theoretic results that are closely tied to the geometric structure of ‐spaces.

Publisher

Wiley

Subject

General Mathematics

Reference27 articles.

1. On invariant measures associated with weakly coupled systems of Kolmogorov equations;Addona D.;Adv. Differential Equations,2019

2. Existence and stability of solutions for semi‐linear parabolic systems, and applications to some diffusion reaction equations;Amann H.;Proc. Roy. Soc. Edinburgh Sect. A, Math.,1978

3. Positive irreducible semigroups and their long‐time behaviour;Arendt W.;Philos. Trans. Roy. Soc. A,2020

4. One-parameter Semigroups of Positive Operators

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3