Degrees of closed points on hypersurfaces

Author:

Balestrieri Francesca1ORCID

Affiliation:

1. Department of Computer Science, Math and Environmental Science The American University of Paris Paris France

Abstract

AbstractLet k be any field. Let be a degree hypersurface. Under some conditions, we prove that if for some extension with and , then for some extension with , , and . Moreover, if a K‐solution is known explicitly, then we can compute explicitly as well. As an application, we improve upon a result by Coray on smooth cubic surfaces by showing that if for some extension with , then for some with .

Publisher

Wiley

Subject

General Mathematics

Reference6 articles.

1. Algebraic points on cubic hypersurfaces

2. J.‐L.Colliot‐ThélèneandJ.‐J.Sansuc La descente sur les variétés rationnelles Journées de Géométrie Algébrique d'Angers Juillet 1979/Algebraic Geometry Angers 1979 Sijthoff & Noordhoff Alphen aan den Rijn 1980 1979 pp.223–237.

3. The Algebraic and Geometric Theory of Quadratic Forms

4. Closed Points on Cubic Hypersurfaces

5. Persistence of the Brauer–Manin obstruction on cubic surfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3