Photoactivated riboflavin‐doped hydroxy apatite nanospheres infiltered in orthodontic adhesives

Author:

Almoammar Salem1,Alnazeh Abdullah A.1,Kamran Muhammad Abdullah1ORCID,Al Jearah Mohammed Mohsen2,Qasim Muhammad3,Abdulla Anshad M.4

Affiliation:

1. Department of Pedodontics and Orthodontic Sciences, College of Dentistry King Khalid University Abha Kingdom of Saudi Arabia

2. Preventive Dentistry Department Najran University Najran Kingdom of Saudi Arabia

3. Department Operative Dentistry and Endodontics King Khalid University Abha Kingdom of Saudi Arabia

4. Department of Pediatric Dentistry Orthodontic Sciences, College of Dentistry King Khalid University Abha Kingdom of Saudi Arabia

Abstract

AbstractTo assess micro‐tensile bond strength (μTBS), degree of conversion (DC), microleakage (ML) antibacterial efficacy, and adhesive remnant index (ARI) of orthodontic brackets to enamel with different concentrations of photoactivated riboflavin‐doped hydroxyapatite (HA) nanospheres (NS) (0%,1%,5% and 10%) and 0.5 wt% RF alone in orthodontic adhesive. Samples were included on the predefined inclusion criteria and positioned up to the cementoenamel junction (CEJ). Hydroxy apatite nanospheres (HANS) commercially bought were doped with RF. Surface characterization of HANS and RF‐doped HANS were assessed along with EDX analysis. Samples were grouped based on experimental orthodontic adhesive modification. Group 1: Transbond XT no modification, Group 2: experimental Transbond XT 0.5 wt% RF, Group 3: experimental Transbond XT 0.5 wt% RF‐doped 1% HANS, Group 4: experimental Transbond XT 0.5 wt % RF‐doped 5% HANS and Group 5: Experimental Transbond XT 0.5 wt% RF‐doped 10% HANS. Brackets were placed based on different adhesive modifications and samples underwent thermocycling. Samples were evaluated for μTBS, DC, and ML. The type of failure was assessed using ARI. Adhesive modified and un‐modified in four different concentrations (0%, 1%, 5%, and 10%) and 0.5 wt% RF only were used to test efficacy against Streptococcus mutans (S.mutans). The survival rate of S.mutans and ML was determined using the Kruskal–Wallis Test. For the analysis of μTBS, ANOVA was employed, followed by a post‐hoc Tukey HSD multiple comparisons test. The highest μTBS and lowest ML were observed in Group 2 experimental Transbond XT 0.5 wt% RF only. The lowest μTBS, highest ML, and lowest DC was seen in Group 5 experimental Transbond XT 0.5 wt% RF‐doped 10% HANS. Samples in Group 1 in which Transbond XT was used as adhesive demonstrated significantly the highest microbial count of S.mutans and DC. Photoactivated RF‐doped HANS in 1% and 0.5 wt% Riboflavin alone in orthodontic adhesive for metallic bracket bonding improved micro tensile bond strength, ML, DC, and antibacterial scores.Research Highlights The highest μTBS and lowest ML were observed in Group 2 experimental Transbond XT 0.5 wt% RF only. The lowest μTBS, highest ML, and lowest DC was seen in Group 5 experimental Transbond XT 0.5 wt% RF‐doped 10% HA‐NS. Samples in Group 1 in which Transbond XT was used as adhesive demonstrated significantly the highest microbial count of S.mutans and DC

Funder

Deanship of Scientific Research, King Khalid University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3