Structural characteristics and regenerative potential: Insights from the molly fish spinal cord

Author:

Awad Mahmoud1,Sayed Ramy K. A.2ORCID,Mohammadin Dalia1,Hussein Marwa M.3ORCID,Mokhtar Doaa M.34ORCID

Affiliation:

1. Department of Histology, Faculty of Veterinary Medicine South Valley University Qena Egypt

2. Department of Histology, Faculty of Veterinary Medicine Sohag University Sohag Egypt

3. Department of Cell and Tissues, Faculty of Veterinary Medicine Assiut University Assiut Egypt

4. Department of Histology and Anatomy, School of Veterinary Medicine Badr University in Assiut Assiut Egypt

Abstract

AbstractUnlike mammals, species such as fish and amphibians can regenerate damaged spinal cords, offering insights into potential therapeutic targets. This study investigates the structural features of the molly fish spinal cord through light and electron microscopy. The most notable characteristic was the presence of Mauthner cells (M‐cells), which exhibited large cell bodies and processes, as well as synaptic connections with astrocytes. These astrocytic connections contained synaptic vesicles, suggesting electrical transmission at the M‐cell endings. Astrocytes, which were labeled with glial fibrillary acidic protein (GFAP), contained cytoplasmic glycogen granules, potentially serving as an emergency fuel source. Two types of oligodendrocytes were identified: a small, dark cell and a larger, lighter cell, both of which reacted strongly with oligodendrocyte transcription factor 2 (Olig2). The dark oligodendrocyte resembled human oligodendrocyte precursors, while the light oligodendrocyte was similar to mature human oligodendrocytes. Additionally, proliferative neurons in the substantia grisea centralis expressed myostatin, Nrf2, and Sox9. Collectively, these findings suggest that the molly fish spinal cord has advanced structural features conducive to spinal cord regeneration and could serve as an excellent model for studying central nervous system regeneration. Further studies on the functional aspects of the molly fish spinal cord are recommended.Research Highlights Mauthner cells (M‐cell), with their typical large cell body and processes, were the most characteristic feature in Molly fish spinal cord, where it presented synaptic connections with astrocytes and their ends contained synaptic vesicles indicating an electrical transmission in the M‐cells endings. Two types of oligodendrocytes could be recognized; both reacted intensely with Oligodendrocyte transcription factor 2 (Olig2). The proliferative neurons of the substantia grisea centralis expressed myostatin, Nrf2, and Sox9. The findings of this study suggest that molly fish possess highly developed structural features conducive to spinal cord regeneration. Consequently, they could be deemed an exemplary model for investigating central nervous system regeneration.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3