Affiliation:
1. Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences Nankai University Tianjin China
2. Department of Biochemistry and Molecular Biology, College of Life Sciences Nankai University Tianjin China
Abstract
AbstractMicrobial production of polyhydroxyalkanoate (PHA) is greatly restricted by high production cost arising from high‐temperature sterilization and expensive carbon sources. In this study, a low‐cost PHA production platform was established from Halomonas cupida J9. First, a marker‐less genome‐editing system was developed in H. cupida J9. Subsequently, H. cupida J9 was engineered to efficiently utilize xylose for PHA biosynthesis by introducing a new xylose metabolism module and blocking xylonate production. The engineered strain J9UΔxylD‐P8xylA has the highest PHA yield (2.81 g/L) obtained by Halomonas with xylose as the sole carbon source so far. This is the first report on the production of short‐ and medium‐chain‐length (SCL‐co‐MCL) PHA from xylose by Halomonas. Interestingly, J9UΔxylD‐P8xylA was capable of efficiently utilizing glucose and xylose as co‐carbon sources for PHA production. Furthermore, fed‐batch fermentation of J9UΔxylD‐P8xylA coupled to a glucose/xylose co‐feeding strategy reached up to 12.57 g/L PHA in a 5‐L bioreactor under open and unsterile condition. Utilization of corn straw hydrolysate as the carbon source by J9UΔxylD‐P8xylA reached 7.0 g/L cell dry weight (CDW) and 2.45 g/L PHA in an open fermentation. In summary, unsterile production in combination with inexpensive feedstock highlights the potential of the engineered strain for the low‐cost production of PHA from lignocellulose‐rich agriculture waste.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献