Prediction of physicochemical and pharmacokinetic properties of botanical constituents by computational models

Author:

Liu Yitong1ORCID,Lawless Michael2,Li Miao3,Fairman Kiara3,Embry Michelle R.4,Mitchell Constance A.4

Affiliation:

1. Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition U.S. Food and Drug Administration Laurel Maryland USA

2. Simulations Plus Lancaster California USA

3. Division of Biochemical Toxicology, National Center for Toxicological Research U.S. Food and Drug Administration Jefferson Arkansas USA

4. Health and Environmental Sciences Institute Washington DC USA

Abstract

AbstractBotanicals contain complex mixtures of chemicals most of which lack pharmacokinetic data in humans. Since physicochemical and pharmacokinetic properties dictate the in vivo exposure of botanical constituents, these parameters greatly impact the pharmacological and toxicological effects of botanicals in consumer products. This study sought to use computational (i.e., in silico) models, including quantitative structure–activity relationships (QSAR) and physiologically based pharmacokinetic (PBPK) modeling, to predict properties of botanical constituents. One hundred and three major constituents (e.g., withanolides, mitragynine, and yohimbine) in 13 botanicals (e.g., ashwagandha, kratom, and yohimbe) were investigated. The predicted properties included biopharmaceutical classification system (BCS) classes based on aqueous solubility and permeability, oral absorption, liver microsomal clearance, oral bioavailability, and others. Over half of these constituents fell into BCS classes I and II at dose levels no greater than 100 mg per day, indicating high permeability and absorption (%Fa > 75%) in the gastrointestinal tract. However, some constituents such as glycosides in ashwagandha and Asian ginseng showed low bioavailability after oral administration due to poor absorption (BCS classes III and IV, %Fa < 40%). These in silico results fill data gaps for botanical constituents and could guide future safety studies. For example, the predicted human plasma concentrations may help select concentrations for in vitro toxicity testing. Additionally, the in silico data could be used in tiered or batteries of assays to assess the safety of botanical products. For example, highly absorbed botanical constituents indicate potential high exposure in the body, which could lead to toxic effects.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3