Fully integrated downstream process to enable next‐generation manufacturing

Author:

Ramos Irina1ORCID,Sharda Nikunj1,Villafana Ramon2,Hill‐Byrne Kevin3,Cai Kang4,Pezzini Joanna3,Coffman Jon1ORCID

Affiliation:

1. Bioprocess Technologies and Engineering, Biopharmaceutical Development AstraZeneca Gaithersburg Maryland USA

2. Molecular Biology and Protein Sciences Inhibrx La Jolla California USA

3. PAK BioSolutions Vienna Virginia USA

4. Purification Process Sciences, Viral Clearance AstraZeneca Gaithersburg Maryland USA

Abstract

AbstractNext‐generation manufacturing (NGM) has evolved over the past decade to a point where large biopharmaceutical organizations are making large investments in the technology and considering implementation in clinical and commercial processes. There are many well‐considered reasons to implement NGM. For the most part, organizations will not fund NGM unless the implementation benefits the funding organization by providing reduced costs, reduced time, or additional needed capabilities. Productivity improvements gained from continuous purification are shown in this work, which used a new system that fully integrates and automates several downstream unit operations of a biopharmaceutical process to provide flexibility and easy implementation of NGM. The equipment and automation needed to support NGM can be complicated and expensive. Biopharmaceutical Process Development considered two options as follows: (1) design its own NGM system or (2) buy a prebuilt system. PAK BioSolutions offers a turn‐key automated and integrated system that can operate up to four continuous purification stages simultaneously, while maintaining a small footprint in the manufacturing plant. The system provides significant cost benefits (~10× lower) compared with the alternative—integration of many different pieces of equipment through a Distributed Control System that would require significant engineering time for design, automation, and integration. Integrated and Continuous Biomanufacturing can lead to significant reductions in facility size, reduced manufacturing costs, and enhanced product quality when compared with the traditional batch mode of operation. The system uses new automation strategies that robustly link unit operations. We present the optimized process fit, sterility and bioburden control strategy, and automation features (such as pH feedback control and in‐line detergent addition), which enabled continuous operation of a 14‐day end‐to‐end monoclonal antibody purification process at the clinical manufacturing scale.

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3