Immune responses of the Asian onion moth, Acrolepiopsis sapporensis, and their genetic factors from RNA‐Seq analysis

Author:

Hrithik Md Tafim Hossain1,Kim Yonggyun1ORCID

Affiliation:

1. Department of Plant Medicals Andong National University Andong Korea

Abstract

AbstractA nonmodel insect, Acrolepiopsis sapporensis, has been analyzed in immune responses. The total hemocytes in the fifth instar larvae were 2.33 × 106 cells/mL. These hemocytes comprised at least five different types and different relative ratios: 47% granulocytes, 26% plasmatocytes, 11% oenocytoid, 8% prohemocytes, and 5% spherulocytes. Upon bacterial challenge, some of the hemocytes exhibited typical hemocyte‐spreading behaviors, such as focal adhesion, and filopodial and lamellipodial cytoplasmic extensions. The hemocyte behaviors induced cellular immune responses demonstrated by nodule formation. In addition, the plasma collected from the immune‐challenged larvae exhibited humoral immune responses by bacterial growth inhibition along with enhanced phenoloxidase enzyme activity. These cellular and humoral immune responses were further analyzed by determining the immune‐associated genes from a transcriptome generated by RNA‐Seq. A total of about 12 Gb sequences led to about 218,116 contigs, which were predicted to encode about 46,808 genes. Comparative expression analysis showed 8392 uniquely expressed genes in the immune‐challenged larvae. Differentially expressed gene (DEG) analysis among the commonly expressed genes indicated that 782 genes were upregulated and 548 genes were downregulated in the expressions after bacterial challenge. These immune‐associated genes included pattern recognition receptors, immune mediation/signaling genes, and various immune effectors. Specifically, the genetic components of the Toll, IMD, and JAK/STAT immune signaling pathways were included in the DEG database. These results demonstrate the immune responses of A. sapporensis larvae and suggest the genes associated with the immune responses in this nonmodel insect.

Publisher

Wiley

Subject

Insect Science,General Medicine,Biochemistry,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3