A study of poly(pentaerythritol triallyl ether) embolic granules with medium swelling properties using for vascular embolizations against hepatocellar carcinoma

Author:

Lin Lingyin1,Lin Runxing1,Li Xufeng2,Zhou Yanfang1,Zhao Xiaotian1,Huang Wanqiu1,Li Qiuxia1,Huang Yugang1,Wang He3,Ye Guodong1ORCID

Affiliation:

1. The Fifth Affiliated Hospital, Guangdong Province & NMPA & State Key Laboratory, School of Pharmaceutical Sciences Guangzhou Medical University Guangzhou China

2. The Second Affiliated Hospital of Guangzhou Medical University Guangzhou China

3. Center of Cancer Research, The Second Affiliated Hospital Guangzhou Medical University Guangzhou China

Abstract

AbstractInterventional embolotherapy is widely used in clinical treatment of conservative liver cancer. This method has many advantages, such as good targeting, mild trauma, and low complications. The operation of transcatheter arterial embolization is to inject embolic microspheres into the arterial blood vessels of diseased organs, so as to occlude them and interrupt the blood supply, thus achieving the therapeutic purpose. However, there are still some deficiencies in clinical materials, for example catheter obstruction or vascular regeneration. In this study, pentaerythritol triallyl ether (APE) and its esterified product APEAA were used to prepare new polymeric amorphous embolic granules (PAPE and PAPEAA). The purpose is to overcome the excessive swelling problems of traditional polyvinyl alcohol granules (PVA). We verified that PAPE and PAPEAA were quickly and efficiently polymerized by photo‐driven radical‐mediated [3 + 2] cyclopolymerization mechanism (PRMC). RT‐FTIR was used to explore the best route of photopolymerization initiated by four photoinitiators. Four physical properties experiments all prove that the particle has good physical properties. In vivo animal experiments, it is confirmed that the particles can achieve the expected effect and have good biological safety. The results show that the amorphous granules can meet the requirements of clinical injection and can be used as a new embolic material.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3