Recyclable, healable, and stretchable thermoset shape memory polythiourethane/carbon nanotube composite with segregated conductive structure for strain sensing

Author:

Hu Fangfang1,Yao Chenxin1,Huang Miaoming1ORCID,He Suqin1,Liu Hao1,Liu Wentao1,Zhu Chengshen1,Xu Wanlin1

Affiliation:

1. School of Materials Science and Engineering Zhengzhou University Zhengzhou People's Republic of China

Abstract

AbstractSegregated conductive polymer composites (CPCs) show high conductivity at low loading of filler. However, the weak interactions between fillers and polymer matrix may destroy the mechanical property of the segregated CPCs. Moreover, even with the introduction of dynamic bonds in thermoset polymers, the preparation of thermosetting CPCs remains a big challenge, as most crosslinked polymers should be ground into granules or crushed into powder with liquid nitrogen before mixing with fillers. Herein, the dynamic crosslinked polythiourethane microspheres (PTUM) are designed and synthesized. Then, a special mixing method (the mixing temperature is higher than melting temperature of soft segments of PTUM) is used to make the carbon nanotubes (CNTs) adhering closely to the surface of the crosslinked PTUM, promoting the formation of compacted conductive network. The CNT‐3%/PTUM shows the electrical conductivity of 21.9 S/m and an elongation at break of 472%. Additionally, the CNT/PTUM composites exhibit good self‐healing property, reprocessability, and close‐loop recycling property. The construction of dynamic crosslinked microspheres and compacted segregated conductive network in this work supplies a new approach to prepare thermoset CPCs with simultaneous high electrical conductivity and mechanical property, which is expected to be applied to wearable strain sensors.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3