Spatiotemporal difference of deformation and failure affected by a large discontinuity in the surrounding rock mass: A case study at the Baihetan underground powerhouse

Author:

Shi An‐chi1,Wang Meng2,Li Hai‐bo3,Yuan Fei2,Yan Hong‐chuan2,Zhou Jia‐wen2ORCID

Affiliation:

1. PowerChina Huadong Engineering Corporation Limited Hangzhou P.R. China

2. State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu P.R. China

3. College of Water Resource and Hydropower Sichuan University Chengdu P.R. China

Abstract

The deformation and failure of the surrounding rock mass is a key issue during the construction of large‐scale underground powerhouse, and large discontinuities are likely to cause this problem in the presence of complex geological structures. This article takes the right bank underground powerhouse of the Baihetan Hydropower Station as a case study. In this case, deformation mutation of the surrounding rock mass occurred in the south section of the main powerhouse, with the maximum deformation reaching 178 mm, and the deformation and failure of different parts showed differences. A comprehensive study integrating field survey, site monitoring, laboratory test and numerical simulation was carried out. By field survey and monitoring, characteristics of deformation and failure are described, and the spatiotemporal difference in deformation is analysed. The stress evolution during excavation is studied based on numerical simulations, the mechanical response of rock is derived through laboratory tests, and the mechanism of spatiotemporal difference is revealed. The results indicate that the main reason for the spatiotemporal difference is the presence of slightly inclining interlayer shear zone C4. In the south section, the excavation‐induced stress concentration at the arch was enhanced due to C4, with the maximum principal stress exceeding 70 MPa, and the high compressive stress here triggered the deformation mutation of surrounding rock mass. After undergoing a stress path from concentration to unloading, the surrounding rock mass at the downstream sidewall was seriously damaged, and its deformation also mutated under approximately vertical stress. The mutation resulted in the uneven spatial distribution, large increment and time‐dependent feature of deformation.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3