Predictability of commodity futures returns with machine learning models

Author:

Wang Shirui1,Zhang Tianyang2ORCID

Affiliation:

1. Independent Researcher Beijing China

2. Wenlan School of Business Zhongnan University of Economics and Law Wuhan Hubei China

Abstract

AbstractWe use prevailing machine learning models to investigate the predictability of futures returns in 22 commodities with commodity‐specific and macroeconomic factors as predictors. Out‐of‐sample prediction errors for the majority of futures contracts are lowered compared with those obtained by the baseline models of AR(1) and forecast combinations. Using Shapley values to explain feature importance, we identify dominant predictors for each commodity. A long–short portfolio strategy based on monthly light gradient‐boosting machine predictions outperforms the benchmark linear models in terms of annual return, Sharpe ratio, and max drawdown.

Publisher

Wiley

Subject

Economics and Econometrics,Finance,General Business, Management and Accounting,Accounting

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3