Animal‐to‐Human Dose Translation of ANTHRASIL for Treatment of Inhalational Anthrax in Healthy Adults, Obese Adults, and Pediatric Subjects

Author:

Beliveau Martin1,Rubets Igor1,Bojan Drobic2,Hall Christine2,Toth Derek2,Kodihalli Shantha2,Kammanadiminti Srinivas2ORCID

Affiliation:

1. Integrated Drug Development, Certara Montreal Quebec Canada

2. Emergent BioSolutions Inc. Winnipeg Manitoba Canada

Abstract

Anthrax Immune Globulin Intravenous (AIGIV [ANTHRASIL]), was developed for the treatment of toxemia associated with inhalational anthrax. It is a plasma product collected from individuals vaccinated with anthrax vaccine and contains antitoxin IgG antibodies against Bacillus anthracis protective antigen. A pharmacokinetic (PK) and exposure–response model was constructed to assess the PKs of AIGIV in anthrax‐free and anthrax‐exposed rabbits, non‐human primates and anthrax‐free humans, as well as the relationship between AIGIV exposure and survival from anthrax, based on available preclinical/clinical studies. The potential effect of anthrax on the PKs of AIGIV was evaluated and estimates of survival odds following administration of AIGIV protective doses with and without antibiotic co‐treatment were established. As the developed PK model can simulate exposure of AIGIV in any species for any dosing scenario, the relationship between the predicted area under the concentration curve of AIGIV in humans and the probability of survival observed in preclinical studies was explored. Based on the simulation results, the intravenous administration of 420 U (units of potency as measured by validated Toxin Neutralization Assay) of AIGIV is expected to result in a > 80% probability of survival in more than 90% of the human population. Additional simulations suggest that exposure levels were similar in healthy and obese humans, and exposure in pediatrics is expected to be up to approximately seven‐fold higher than in healthy adults, allowing for doses in pediatric populations that ranged from one to seven vials. Overall, the optimal human dose was justified based on the PK/pharmacodynamic (PD) properties of AIGIV in animals and model‐based translation of PK/PD to predict human exposure and efficacy.

Publisher

Wiley

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3