Optimizing recombinant antibody fragment production: A comparison of artificial intelligence and statistical modeling

Author:

Basafa Majid1,Hashemi Atieh1ORCID,Behravan Aidin1

Affiliation:

1. Department of Pharmaceutical Biotechnology, School of Pharmacy Shahid Beheshti University of Medical Sciences Tehran Iran

Abstract

AbstractMaximizing the recombinant protein yield necessitates optimizing the production medium. This can be done using a variety of methods, including the conventional “one‐factor‐at‐a‐time” approach and more recent statistical and mathematical methods such as artificial neural network (ANN), genetic algorithm, etc. Every approach has advantages and disadvantages of its own, yet even when a technique has flaws, it is nevertheless used to get the best results. Here, one categorical variable and four numerical parameters, including post‐induction time, inducer concentration, post‐induction temperature, and pre‐induction cell density, were optimized using the 232 experimental assays of the central composite design. The direct and indirect effects of factors on the yield of anti‐epithelial cell adhesion molecule extracellular domain fragment antibody were examined using statistical methods. The analysis of variance results indicate that the response surface methodology (RSM) model is effective in predicting the amount of produced single‐chain fragment variable (p‐value = 0.0001 and R2 = 0.905). For ANN modeling, the evaluation using normalized root mean square error (NRMSE) and R2 values shows a good fit (R2 = 0.942) and accurate predictions (NRMSE = 0.145). The analysis of error parameters and R2 of a dataset, which contained 30 data points randomly selected from the complete dataset, showed that the ANN model had a higher R2 value (0.968) compared to the RSM model (0.932). Furthermore, the ANN model demonstrated stronger predictive ability with a lower NRMSE (0.048 vs. 0.064). Induction at the cell density of 0.7 and an isopropyl β‐D‐1‐thiogalactopyranoside concentration of 0.6 mM for 32 h at 30°C in BW25113 was the ideal culture condition leading to the protein yield of 259.51 mg/L. Under the optimum conditions, the output values predicted by the ANN model (259.83 mg/L) were more in line with the experimental data (259.51 mg/L) than the RSM (276.13 mg/L) expected value. This outcome demonstrated that the ANN model outperforms the RSM in terms of prediction accuracy.

Funder

Shahid Beheshti University of Medical Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3