Carbon sequestration and water management in Texas—One size does not fit all

Author:

Bell Jourdan1,DeLaune Paul B.2,Fischer Bart L.3,Foster Jamie L.4,Lewis Katie L.56ORCID,McCarl Bruce A.3,Outlaw Joe L.3

Affiliation:

1. Texas A&M AgriLife Research and Extension Center Amarillo Texas USA

2. Texas A&M AgriLife Research and Extension Center Vernon Texas USA

3. Department of Agricultural Economics Texas A&M University College Station Texas USA

4. Texas A&M AgriLife Research Beeville Texas USA

5. Texas A&M AgriLife Research and Extension Center Lubbock Texas USA

6. Department of Plant and Soil Science Texas Tech University Lubbock Texas USA

Abstract

AbstractClimate‐smart agriculture (CSA) is an integrated approach to sustainably meeting food, fiber, and feed production needs. The technical and socioeconomic feasibility of different CSA strategies depends on local conditions, and there is no one‐size‐fits‐all approach. Here, we review two key aspects of CSA with a focus on Texas: soil C sequestration and water management. Carbon sequestration potential is highly variable across Texas as it depends on local biophysical conditions and soil management practices in place, for example, tillage and cover crops. Grasslands also have an important role to play in C sequestration. Important co‐benefits of effective soil management for C sequestration, such as reduced CO2 emissions, enhanced soil structure, and increased microbial activity, can positively impact soil fertility and productivity. The economic and political realities of C sequestration will have a strong influence on the implementation of technically feasible strategies. The major challenge for water management is the sustainable allocation of increasingly scarce resources. Expanded irrigation is a short‐term solution, but in many cases, the existing water supply is insufficient to meet future demand. A drying Texas, and aquifer depletion, portends lower future supplies. The Panhandle, Llano Estacado, and Rio Grande regions have the greatest projected gaps between future supply and demand. Increasing water‐use efficiency and using drought‐tolerant crops are important management goals and precision agriculture with site‐specific management measures could help improve drought resiliency. Texas’ geographic diversity is reflected in the variety of agricultural commodities produced by the state, and CSA activities are likely to be equally diverse.

Publisher

Wiley

Subject

Plant Science,Soil Science,Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3