Function of Ezrin-Radixin-Moesin Proteins in Migration of Subventricular Zone-Derived Neuroblasts Following Traumatic Brain Injury

Author:

Moon Younghye12,Kim Joo Yeon1,Kim Woon Ryoung1,Kim Hyun Jung1,Jang Min Jee3,Nam Yoonkey3,Kim Kyungjin2,Kim Hyun1,Sun Woong1

Affiliation:

1. Department of Anatomy and Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine, Seoul, Korea

2. Brain and Neuroendocrine Laboratory, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea

3. Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea

Abstract

Abstract Throughout life, newly generated neuroblasts from the subventricular zone migrate toward the olfactory bulb through the rostral migratory stream. Upon brain injury, these migrating neuroblasts change their route and begin to migrate toward injured regions, which is one of the regenerative responses after brain damage. This injury-induced migration is triggered by stromal cell-derived factor 1 (SDF1) released from microglia near the damaged site; however, it is still unclear how these cells transduce SDF1 signals and change their direction. In this study, we found that SDF1 promotes the phosphorylation of ezrin-radixin-moesin (ERM) proteins, which are key molecules in organizing cell membrane and linking signals from the extracellular environment to the intracellular actin cytoskeleton. Blockade of ERM activation by overexpressing dominant-negative ERM (DN-ERM) efficiently perturbed the migration of neuroblasts. Considering that DN-ERM-expressing neuroblasts failed to maintain proper migratory cell morphology, it appears that ERM-dependent regulation of cell shape is required for the efficient migration of neuroblasts. These results suggest that ERM activation is an important step in the directional migration of neuroblasts in response to SDF1-CXCR4 signaling following brain injury.

Funder

Korean Ministry of Education, Science and Technology

Brain Research Center of the 21st Century Frontier Program in Neuroscience

National Research Foundation of Korea

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3