Affiliation:
1. College of Artificial Intelligence Nanjing Agricultural University Nanjing Jiangsu China
2. South China Academy of Advanced Optoelectronics South China Normal University Guangzhou China
3. College of Engineering Nanjing Agricultural University Nanjing Jiangsu China
Abstract
AbstractEngineering education can be improved through the implementation of a flipped classroom, an instructional approach that allows students to learn theory online and practice it offline. However, the flipped classroom approach does not directly solve the challenge of the high dropout rate in online distance education, such as massive open online courses (MOOCs). Actually, distance education lacks the convenience of face‐to‐face communication and supervision. This study considers a deep learning model based on an attention mechanism in addition to some other common traditional machine learning models in an engineering MOOC with a flipped classroom design. The aim is to predict students' future performance and assist teachers in discovering the important learning stages that affect the prediction, thus improving teaching and learning performance. Our model performs better than other commonly used models. It is found that the middle and final learning stages, where specific knowledge is taught, are important, offering a new approach to analyzing and promoting distance engineering education.
Subject
General Engineering,Education,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献