Quantification of uncertainties in projections of extreme daily precipitation simulated by CMIP6 GCMs over homogeneous regions of India

Author:

Nair Meera M.12,Rajesh A. Naga12ORCID,Sahai A. K.3ORCID,Lakshmi Kumar T. V.12ORCID

Affiliation:

1. Department of Physics and Nanotechnology, Faculty of Engineering and Technology SRM Institute of Science and Technology Kattankulathur Tamil Nadu India

2. Centre for Atmospheric Sciences and Climate Studies (TROPIC), Faculty of Engineering and Technology SRM Institute of Science and Technology Kattankulathur Tamil Nadu India

3. Indian Institute of Tropical Meteorology Pune India

Abstract

AbstractGlobal climate model (GCM) projections are subject to significant uncertainties. Quantifying uncertainties in climate change projections improves credibility and makes climate data more reliable. This study aims to quantify the uncertainties in projected extreme precipitation during the 21st century over the homogeneous rainfall regions of India simulated by Coupled Model Intercomparison Project Phase 6 (CMIP6) GCMs. The percentile‐based square root error variance (SREV) method estimates model, scenario and ensemble uncertainties in projections of extreme precipitation. The uncertainty is investigated at four thresholds: 95th, 99th, 99.9th and 100th percentiles. The results show that the wet northeast region has a greater SREV, which is consistent with previous studies. At 99th and 99.9th percentiles, relative model SREV is dominant over the northeast (NE) region. However, at the 95th percentile high relative model SREV is found over the northwest (NW) region during southwest (June, July, August and September) and NE (October, November and December) monsoon seasons. Model uncertainty is the main source of uncertainty, followed by scenario and ensemble uncertainties. The study indicates that the arid NW region in India has a higher level of uncertainty than other regions with homogeneous rainfall. These findings will assist policymakers in planning infrastructure development in arid regions of India.

Publisher

Wiley

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3