Variable selection wrapper in presence of correlated input variables for random forest models

Author:

Rotari Marta1ORCID,Kulahci Murat12ORCID

Affiliation:

1. Department of Applied Mathematics and Computer Science Technical University of Denmark Kongens Lyngby Denmark

2. Department of Business Administration Technology and Social Sciences Luleå University of Technology Luleå Sweden

Abstract

AbstractIn most data analytic applications in manufacturing, understanding the data‐driven models plays a crucial role in complementing the engineering knowledge about the production process. Identifying relevant input variables, rather than only predicting the response through some “black‐box” model, is of great interest in many applications. There is, therefore, a growing focus on describing the contributions of the input variables to the model in the form of “variable importance”, which is readily available in certain machine learning methods such as random forest (RF). Once a ranking based on the importance measure of the variables is established, the question of how many variables are truly relevant in predicting the output variable rises. In this study, we focus on the Boruta algorithm, which is a wrapper around the RF model. It is a variable selection tool that assesses the variable importance measure for the RF model. It has been previously shown in the literature that the correlation among the input variables, which is often a common occurrence in high dimensional data, distorts and overestimates the importance of variables. The Boruta algorithm is also affected by this resulting in a larger set of input variables deemed important. To overcome this issue, in this study, we propose an extension of the Boruta algorithm for the correlated data by exploiting the conditional importance measure. This extension greatly improves the Boruta algorithm in the case of high correlation among variables and provides a more precise ranking of the variables that significantly contribute to the response. We believe this approach can be used in many industrial applications by providing more transparency and understanding of the process.

Publisher

Wiley

Subject

Management Science and Operations Research,Safety, Risk, Reliability and Quality

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Correlation to causality;Quality Engineering;2024-07-02

2. The ENBIS‐22 quality and reliability engineering international special issue;Quality and Reliability Engineering International;2023-12-17

3. Stream-Based Active Learning for Regression with Dynamic Feature Selection;2023 Fifth International Conference on Transdisciplinary AI (TransAI);2023-09-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3