Differential Regulation of Human Bone Marrow Mesenchymal Stromal Cell Chondrogenesis by Hypoxia Inducible Factor-1α Hydroxylase Inhibitors

Author:

Taheem Dheraj K.1ORCID,Foyt Daniel A.1,Loaiza Sandra2,Ferreira Silvia A.1,Ilic Dusko3,Auner Holger W.2,Grigoriadis Agamemnon E.1,Jell Gavin4,Gentleman Eileen1

Affiliation:

1. Centre for Craniofacial and Regenerative Biology, Women's Health Academic Centre KHP, King's College London, London, United Kingdom

2. Cancer Cell Protein Metabolism Group, Department of Medicine, Imperial College London, London, United Kingdom

3. Division of Women's Health, Women's Health Academic Centre KHP, King's College London, London, United Kingdom

4. Division of Surgery & Interventional Science, University College London, London, United Kingdom

Abstract

Abstract The transcriptional profile induced by hypoxia plays important roles in the chondrogenic differentiation of marrow stromal/stem cells (MSC) and is mediated by the hypoxia inducible factor (HIF) complex. However, various compounds can also stabilize HIF's oxygen-responsive element, HIF-1α, at normoxia and mimic many hypoxia-induced cellular responses. Such compounds may prove efficacious in cartilage tissue engineering, where microenvironmental cues may mediate functional tissue formation. Here, we investigated three HIF-stabilizing compounds, which each have distinct mechanisms of action, to understand how they differentially influenced the chondrogenesis of human bone marrow-derived MSC (hBM-MSC) in vitro. hBM-MSCs were chondrogenically-induced in transforming growth factor-β3-containing media in the presence of HIF-stabilizing compounds. HIF-1α stabilization was assessed by HIF-1α immunofluorescence staining, expression of HIF target and articular chondrocyte specific genes by quantitative polymerase chain reaction, and cartilage-like extracellular matrix production by immunofluorescence and histochemical staining. We demonstrate that all three compounds induced similar levels of HIF-1α nuclear localization. However, while the 2-oxoglutarate analog dimethyloxalylglycine (DMOG) promoted upregulation of a selection of HIF target genes, desferrioxamine (DFX) and cobalt chloride (CoCl2), compounds that chelate or compete with divalent iron (Fe2+), respectively, did not. Moreover, DMOG induced a more chondrogenic transcriptional profile, which was abolished by Acriflavine, an inhibitor of HIF-1α-HIF-β binding, while the chondrogenic effects of DFX and CoCl2 were more limited. Together, these data suggest that HIF-1α function during hBM-MSC chondrogenesis may be regulated by mechanisms with a greater dependence on 2-oxoglutarate than Fe2+ availability. These results may have important implications for understanding cartilage disease and developing targeted therapies for cartilage repair.

Funder

Orthopaedic Research UK

Rosetrees Trust

Cancer Research UK

Leverhulme Trust

Wellcome Trust

National Institute of Health Research Imperial Biomedical Research Centre

Imperial College London Healthcare Tissue Bank

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3