Hematopoietic Stem/Progenitor Cells Directly Contribute to Arteriosclerotic Progression via Integrin β2

Author:

Wang Xuhong1,Gao Mingming2,Schouteden Sarah3,Roebroek Anton4,Eggermont Kristel3,van Veldhoven Paul P.5,Liu George1,Peters Thorsten6,Scharffetter-Kochanek Karin6,Verfaillie Catherine M.3,Feng Yingmei3

Affiliation:

1. Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology Lu He Hospital, Capital Medical University, Beijing, People's Republic of China

2. Institute of Cardiovascular Sciences, Peking University, Beijing, People's Republic of China

3. Interdepartmental Stem Cell Institute Katholieke Universiteit Leuven, Belgium

4. Department of Human Genetics Katholieke Universiteit Leuven, Belgium

5. Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine Katholieke Universiteit Leuven, Leuven, Belgium

6. Department of Dermatology and Allergic Diseases Ulm University, Ulm, Germany

Abstract

Abstract Recent studies described the association between hematopoietic stem/progenitor cell (HSPC) expansion in the bone marrow (BM), leukocytosis in the peripheral blood, and accelerated atherosclerosis. We hypothesized that circulating HSPC may home to inflamed vessels, where they might contribute to inflammation and neointima formation. We demonstrated that Lin− Sca-1+ cKit+ (LSK cells) in BM and peripheral blood of LDLr−/− mice on high fat diet expressed significantly more integrin β2, which was responsible for LSK cell adhesion and migration toward ICAM-1 in vitro, and homing to injured arteries in vivo, all of which were blocked with an anti-CD18 blocking antibody. When homed LSK cells were isolated from ligated artery and injected to irradiated recipients, they resulted in BM reconstitution. Injection of CD18+/+ LSK cells to immunodeficient Balb/C Rag2− ɣC−/− recipients resulted in more severe inflammation and reinforced neointima formation in the ligated carotid artery, compared to mice injected with PBS and CD18−/− LSK cells. Hypercholesterolemia stimulated ERK phosphorylation (pERK) in LSK cells of LDLr−/− mice in vivo. Blockade of pERK reduced ARF1 expression, leading to decreased integrin β2 function on HSPC. In addition, integrin β2 function could be regulated via ERK-independent LRP1 pathway. Integrin β2 expression on HSPC is regulated by hypercholesterolemia, specifically LDL, in pERK-dependent and -independent manners, leading to increased homing and localization of HSPC to injured arteries, which is highly correlated with arteriosclerosis. Stem Cells  2015;33:1230–1240

Funder

FWO funding

Vanwayenberghe fonds

Odysseus

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3