Molecular engineering assembly of mesoporous carbon onto Ti3C2Tx MXene for enhanced lithium‐ion storage

Author:

Li Haitao1,Lv Fengting1,Fang Xiao2,Zhu Guanjia1,Yu Wei2,Zhang Haijiao13ORCID

Affiliation:

1. Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering Shanghai University Shanghai China

2. Shanghai Engineering Research Center of Advanced Thermal Functional Materials Shanghai Polytechnic University Shanghai China

3. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin China

Abstract

AbstractThe rational construction of Ti3C2Tx MXene‐based composites has been deemed as a popular way to improve their electrochemical energy storage performances owing to the unique two‐dimensional (2D) structure, excellent conductivity, and good flexibility. However, it remains a major challenge to assemble mesoporous carbon onto Ti3C2Tx with fewer oxygen‐containing groups by using surfactants with short hydrophilic segments. In the work, we propose a molecular engineering assembly strategy for the growth of N,P co‐doped mesoporous carbon onto Ti3C2Tx nanosheets (NPMC/Ti3C2Tx) under the assistance of phytic acid by using melamine‐formaldehyde resin and pluronic P123 (PEO20PPO70PEO20) as the carbon/nitrogen source and soft template, respectively. The detailed investigations reveal that phytic acid with abundant hydroxyl groups can effectively enhance the hydrogen bond interactions among P123, carbon precursor, and Ti3C2Tx nanosheets, thus ensuring the efficient assembly of mesoporous carbon onto Ti3C2Tx. The obtained NPMC/Ti3C2Tx composite demonstrates a set of merits, including cylindrical mesopore, N,P co‐doping, and a good combination of mesoporous carbon and Ti3C2Tx nanosheets. As a result, it exhibits an improved lithium‐ion storage performance, delivering a high reversible capacity of 556.3 mA h g−1 after 100 cycles at 0.1 A g−1. The present work provides a feasible molecular engineering assembly route for the rational design of high‐performance Ti3C2Tx MXene‐based electrodes.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3