Ca2+/calmodulin‐dependent kinase IIδC‐induced chronic heart failure does not depend on sarcoplasmic reticulum Ca2+ leak

Author:

Dewenter Matthias123,Seitz Tilmann34,Steinbrecher Julia H.34,Westenbrink B. Daan56,Ling Haiyun57,Lehnart Stephan E.34,Wehrens Xander H.T.8,Backs Johannes123910,Brown Joan Heller5,Maier Lars S.11,Neef Stefan11

Affiliation:

1. Medical Faculty Heidelberg, Institute of Experimental Cardiology Heidelberg University Heidelberg Germany

2. Department of Internal Medicine 8 Heidelberg University Hospital Heidelberg Germany

3. DZHK (German Centre for Cardiovascular Research), Partner Sites Heidelberg/Mannheim and Göttingen Heidelberg/Mannheim and Göttingen Germany

4. Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG) Georg August University of Göttingen Göttingen Germany

5. Department of Pharmacology University of California San Diego San Diego CA USA

6. Department of Cardiology, University Medical Center Groningen University of Groningen Groningen The Netherlands

7. Genomics Institute of the Novartis Research Foundation San Diego CA USA

8. Cardiovascular Research Institute and Department of Molecular Physiology and Biophysics Baylor College of Medicine Houston TX USA

9. Molecular Medicine Partnership Unit Heidelberg University & EMBL Heidelberg Germany

10. Helmholtz Institute for Translational AngioCardioScience (HI‐TAC)—a branch of the MDC at Heidelberg University Heidelberg Germany

11. Department of Internal Medicine II University Hospital Regensburg Franz‐Josef‐Strauss‐Allee 11 Regensburg Germany

Abstract

AbstractAimsHyperactivity of Ca2+/calmodulin‐dependent protein kinase II (CaMKII) has emerged as a central cause of pathologic remodelling in heart failure. It has been suggested that CaMKII‐induced hyperphosphorylation of the ryanodine receptor 2 (RyR2) and consequently increased diastolic Ca2+ leak from the sarcoplasmic reticulum (SR) is a crucial mechanism by which increased CaMKII activity leads to contractile dysfunction. We aim to evaluate the relevance of CaMKII‐dependent RyR2 phosphorylation for CaMKII‐induced heart failure development in vivo.Methods and resultsWe crossbred CaMKIIδC overexpressing [transgenic (TG)] mice with RyR2‐S2814A knock‐in mice that are resistant to CaMKII‐dependent RyR2 phosphorylation. Ca2+‐spark measurements on isolated ventricular myocytes confirmed the severe diastolic SR Ca2+ leak previously reported in CaMKIIδC TG [4.65 ± 0.73 mF/F0 vs. 1.88 ± 0.30 mF/F0 in wild type (WT)]. Crossing in the S2814A mutation completely prevented SR Ca2+‐leak induction in the CaMKIIδC TG, both regarding Ca2+‐spark size and frequency, demonstrating that the CaMKIIδC‐induced SR Ca2+ leak entirely depends on the CaMKII‐specific RyR2‐S2814 phosphorylation. Yet, the RyR2‐S2814A mutation did not affect the massive contractile dysfunction (ejection fraction = 12.17 ± 2.05% vs. 45.15 ± 3.46% in WT), cardiac hypertrophy (heart weight/tibia length = 24.84 ± 3.00 vs. 9.81 ± 0.50 mg/mm in WT), or severe premature mortality (median survival of 12 weeks) associated with cardiac CaMKIIδC overexpression. In the face of a prevented SR Ca2+ leak, the phosphorylation status of other critical CaMKII downstream targets that can drive heart failure, including transcriptional regulator histone deacetylase 4, as well as markers of pathological gene expression including Xirp2, Il6, and Col1a1, was equally increased in hearts from CaMKIIδC TG on a RyR WT and S2814A background.ConclusionsS2814 phosphoresistance of RyR2 prevents the CaMKII‐dependent SR Ca2+ leak induction but does not prevent the cardiomyopathic phenotype caused by enhanced CaMKIIδC activity. Our data indicate that additional mechanisms—independent of SR Ca2+ leak—are critical for the maladaptive effects of chronically increased CaMKIIδC activity with respect to heart failure.

Funder

Deutsche Forschungsgemeinschaft

Deutsches Zentrum für Herz-Kreislaufforschung

Universität Regensburg

Medizinischen Fakultät Heidelberg, Universität Heidelberg

Deutsche Gesellschaft für Kardiologie-Herz und Kreislaufforschung.

Korea National Institute of Health

American Heart Association

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

European Commission

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3