Discovery of tryptanthrin analogues bearing F and piperazine moieties as novel phytopathogenic antibacterial and antiviral agents

Author:

Zhang Guang‐Long1ORCID,Wang Zhen‐Chao2,Li Cheng‐Peng2,Chen Dan‐Ping2,Li Zhu‐Rui2,Li Yan2,Ouyang Gui‐Ping123

Affiliation:

1. National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Center for R&D of Fine Chemicals of Guizhou University Guiyang China

2. School of Pharmaceutical Sciences Guizhou University Guiyang China

3. Guizhou Engineering Laboratory for Synthetic Drugs Guizhou University Guiyang China

Abstract

AbstractBACKGROUNDPlant bacterial infections and plant viruses seriously affect the yield and quality of crops. Based on the various activities of tryptanthrin, a series of tryptanthrin analogues bearing F and piperazine moieties were designed, synthesized, and evaluated for their biological activities against three plant bacteria and tobacco mosaic virus (TMV).RESULTSBioassay results indicated that compounds 6a6l displayed excellent antibacterial activities in vitro and 6a6c and 6g exhibited better antiviral activities against TMV than commercial ribavirin. In particular, 6b showed the most effect on Xanthomonas oryzae pv. oryzae (Xoo) with a half‐maximal effective concentration (EC50) of 1.26 μg mL−1, compared with the commercial pesticide bismerthiazol (BT; EC50 = 34.3 μg mL−1) and thiodiazole copper (TC; EC50 = 73.3 μg mL−1). Meanwhile, 6a also had the best antiviral activity at 500 μg mL−1 for curative, protection, and inactivation purposes, compared with ribavirin in vivo.CONCLUSIONCompound 6b could cause changes in bacterial morphology, induce the accumulation of reactive oxygen species, promote apoptosis of bacterial cells, inhibit the formation of biofilm, and block the growth of Xoo cells. Proteomic analysis revealed major differences in the bacterial secretory system pathways T2SS and T6SS, which inhibited membrane transport. Molecular docking revealed that 6a and 6g could interact with TMV coat protein preventing virus assembly. These results suggest that tryptanthrin analogues bearing F and piperazine moieties could be promising candidate agents for antibacterial and antiviral use in agricultural production. © 2023 Society of Chemical Industry.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3