Detection of the storage time of light bruises in yellow peaches based on spectrum and texture features of hyperspectral image

Author:

Li Bin1ORCID,Zou Ji‐ping1,Yin Hai1,Liu Yan‐de1ORCID,Zhang Feng1,Ou‐yang Ai‐guo1ORCID

Affiliation:

1. Institute of Optical‐Electro‐Mechatronics Technology and Application, National and Local Joint Engineering Research Center of Fruit Intelligent Photoelectric Detection Technology and Equipment East China Jiaotong University Nanchang China

Abstract

AbstractYellow peaches are soft, and they bruise easily; the bruised areas of them are prone to breed bacteria and molds, so the consumption and the safety of related products of yellow peaches are affected by the difference in the storage time of light bruises in them. In order to accurately distinguish of the storage time of light bruises in yellow peaches, the spectra of the sample bruised region were combined with texture features extracted based on gray‐level co‐occurrence matrix (GLCM), and the deep learning algorithm was used for modeling. A total of 80 samples were prepared in the experiment, and the hyperspectral images of them were acquired at four time periods (2, 8, 24, and 48 h), and the reflection spectral data as well as the texture features of the bruised samples were extracted from the hyperspectral images. First, the random forest (RF) and extreme gradient boosting (XGBoost) models were built based on spectral, texture, and spectral features combined with texture features (Feature Fusion 1), respectively, and the best model discrimination was the RF model under Feature Fusion 1, with an overall accuracy of 98.33%. In order to remove the redundant information of spectrum, the UVE and CARS algorithms were used to screen the normalized spectral feature data, and then, the texture features were combined again (Feature Fusion 2), and the RF and XGBoost models were built. The results show that the optimal model for distinguishing the storage time of yellow peaches after bruising is the RF model under Feature Fusion 2 (CARS), with an overall accuracy of 98.33%. In summary, this study shows that spectral features combined with texture features can be used to effectively improve the model's discrimination of storage time after bruising of yellow peaches, and it also provides a certain theoretical basis for hyperspectral imaging technology to discriminate storage time after bruising of fruits.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Applied Mathematics,Analytical Chemistry

Reference36 articles.

1. Effects of pre‐harvest bagging and non‐bagging treatment on postharvest storage quality of yellow‐flesh peach;Yunian H;J Chin Inst Food Sci Technol,2021

2. Effect of sucrose control on microstructure and quality of explosion‐puffed yellow peach chips food;Chunju L;Science,2020

3. Application of biospeckle laser imaging for early detection of chilling and freezing disorders in orange

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3