Modifying the properties of polyamide 6 with high‐performance environmentally friendly nano‐ and microsized reinforcing materials

Author:

Mészáros László12,Bezerédi Ádám1,Petrény Roland1

Affiliation:

1. Department of Polymer Engineering Faculty of Mechanical Engineering, Budapest University of Technology and Economics Budapest Hungary

2. HUN‐REN‐BME Research Group for Composite Science and Technology Budapest Hungary

Abstract

AbstractIn this study, we investigated the morphological and mechanical properties of hybrid composites with a polyamide 6 (PA6) matrix and reinforced with basalt fibers (BFs) and halloysite nanotubes (HNTs). The presence of reinforcing materials fundamentally changed the behavior of the molecules, which was morphologically manifested in the change in the ratio of the rigid and the mobile amorphous phase. The x‐ray diffraction and transmission electron microscopic images showed the crystal nucleating effect of the halloysite nanotubes. Based on these, we concluded that around the basalt fibers, an interphase is formed, while around the nanoparticles, a two‐layer interphase is created, the inner layer of which is semicrystalline, while the outer layer is rigid amorphous (RA). The nanoparticles are surrounded by a semicrystalline interphase, which is surrounded by an RA interphase. This overlaps with the interphase of the basalt fibers, therefore the halloysite nanotubes can effectively help the stress transfer from the matrix to the basalt fibers. The mechanical properties of the samples also reflected this: the hybrid composites had a significantly higher tensile modulus, tensile strength, and an unchanged elongation at break compared to the composite reinforced with only basalt fiber.Highlights Environmentally friendly polyamide 6 matrix hybrid composites were prepared. Uniform distribution of halloysite nanotubes was achieved. Enhanced mechanical properties were observed for hybrid composites. Halloysite nanotubes aid stress transfer from matrix to basalt fibers. Halloysite nanotubes act as crystalline nucleating agents.

Funder

Nemzeti Kutatási, Fejlesztési és Innovaciós Alap

Magyar Tudományos Akadémia

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3