Online causal inference with application to near real‐time post‐market vaccine safety surveillance

Author:

Luo Lan1ORCID,Risk Malcolm2,Shi Xu2ORCID

Affiliation:

1. Department of Biostatistics and Epidemiology Rutgers University New Brunswick New Jersey USA

2. Department of Biostatistics University of Michigan Ann Arbor Michigan USA

Abstract

Streaming data routinely generated by social networks, mobile or web applications, e‐commerce, and electronic health records present new opportunities to monitor the impact of an intervention on an outcome via causal inference methods. However, most existing causal inference methods have been focused on and applied to static data, that is, a fixed data set in which observations are pooled and stored before performing statistical analysis. There is thus a pressing need to turn static causal inference into online causal learning to support near real‐time monitoring of treatment effects. In this paper, we present a framework for online estimation and inference of treatment effects that can incorporate new information as it becomes available without revisiting prior observations. We show that, under mild regularity conditions, the proposed online estimator is asymptotically equivalent to the offline oracle estimator obtained by pooling all data. Our proposal is motivated by the need for near real‐time vaccine effectiveness and safety monitoring, and our proposed method is applied to a case study on COVID‐19 vaccine safety surveillance.

Funder

National Institute on Aging

National Institute of General Medical Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3