A facile treatment of graphite as a reinforcement for Al‐based nanostructured composite

Author:

Bakhshizade Elham1,Shokuhfar Ali1,Zolriasatein Ashkan2ORCID,Khodaei Mehdi1ORCID

Affiliation:

1. Advanced Materials and Nanotechnology Research Laboratory, Faculty of Materials Science and Engineering K.N. Toosi University of Technology Tehran Iran

2. Non‐Metallic Materials Research Group Niroo Research Institute Tehran Iran

Abstract

Aluminum‐graphite composites find extensive applications in diverse industries, including automotive and aerospace sectors. However, the fabrication of these composites faces a significant challenge due to poor wettability and weak interfacial bonding between graphite and aluminum. This work aims to modify the graphite particles to improve the characteristics of aluminum. In this study, treated graphite (TG) was synthesized using a facile method for the first time. Graphite (G) was mixed with acetone and stirred with a mechanical stirrer at 2000 rpm for 1 h, followed by drying in an electric oven at 80°C for 1 h. Mechanical milling and subsequent hot pressing were employed to manufacture composites with 1, 3, and 5 wt.% of G and TG. The results demonstrated that the addition of G and TG up to 5 wt.% substantially improved the wear rate and coefficient of friction (COF). However, it also resulted in a deterioration of the mechanical properties of aluminum. The TG‐reinforced composites exhibited enhanced mechanical and tribological properties owing to the stronger bonds formed between carbon and aluminum atoms. Notably, the composite with 5‐wt.% G and TG exhibited an 80% and 58% lower COF compared with unreinforced aluminum. Composites containing 1‐wt.% G and TG showed an 11% and 1% reduction in yield strength, respectively. Consequently, the investigated graphite treatment proves to be an effective method for modifying the interfacial bonding and enhancing the comprehensive properties of aluminum. This treatment offers a simple and cost‐effective approach to improve the tribological and mechanical characteristics of aluminum matrix composites.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3