Multiscale formulation for saturated porous media preserving the representative volume element size objectivity

Author:

Reinaldo A. Anonis1ORCID,Javier L. Mroginski1,Pablo J. Sánchez23

Affiliation:

1. LAMEC‐IMIT‐CONICET Laboratorio de Mecánica Computacional Universidad Nacional del Nordeste Resistencia Argentina

2. CIMEC UNL‐CONICET Santa Fe Argentina

3. GIMNI UTN‐FRSF Santa Fe Argentina

Abstract

SummaryA multiscale model for saturated porous media is proposed, based on the concept of representative volume element (RVE). The physics between macro and micro‐scales is linked in terms of virtual power measures given by the general theory of poromechanics. Then, applying the so‐called Principle of Multiscale Virtual Power, together with suitable admissible constraints on micro‐scale displacement and pore pressure fields, a well‐established variational framework is obtained. This setting allows deriving the weak form of micro‐scale balance equations as well as the homogenization rules for the macro‐scale stress‐like variables and body forces. Whenever the micro‐scale mechanical constitutive functionals admit, as input arguments, the full‐order expansion of the micro‐scale pore pressure field, a size effect is inherited on the macro‐scale material response. The current literature attributes this issue to the so‐called “dynamical” or “second‐order” term of the homogenized flux velocity. It has been commonly suggested that the influence of this term is negligible by assuming infinitely small micro‐scale dimensions. However, such an idea compromises the fundamental notion of the existence of RVE for highly heterogeneous media. In this work, we show that the micro‐scale size dependence can be consistently eliminated by a simple constitutive‐like assumption. Accordingly, slight and selective redefinitions in the input arguments of micro‐scale material laws are proposed, leading to a constitutive formulation that allows the combination of micro‐scale variables with different orders of expansion. Just at this specific (constitutive) level, a reduced‐order expansion is selectively adopted for the micro‐scale pore pressure field. Thus, the RVE notion is restored while still retaining the major effects of the “dynamical” component of the homogenized flux velocity. The proposed formulation is implemented within a finite element squared (FE) environment. Some numerical experiments are presented showing the viability of the methodology, including comparisons against analytical, mono‐scale and DNS solutions.

Funder

Agencia Nacional de Promoción Científica y Tecnológica

Consejo Nacional de Investigaciones Científicas y Técnicas

Universidad Nacional del Litoral

Universidad Nacional del Nordeste

Publisher

Wiley

Subject

Applied Mathematics,General Engineering,Numerical Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3