Systematic mutational analysis reveals an essential role of N275 in IgE stability

Author:

Kumari Shikha123ORCID,Ghosh Sanjay2,Joshi Saurabh3,Guenther Ralf4,Siegmund Vanessa4,Doerner Achim4ORCID

Affiliation:

1. Manipal Academy of Higher Education Manipal India

2. Institute of Bioinformatics and Applied Biotechnology Bengaluru India

3. Syngene International Ltd. Bengaluru India

4. Merck Healthcare KGaA Darmstadt Germany

Abstract

AbstractTherapeutic antibodies have predominantly been IgG‐based. However, the ongoing clinical trial of MOv18 IgE has highlighted the potential of using IgE antibodies in cancer therapy. While extensive studies targeting IgG glycosylation resulted in a rational basis for the development of enhanced biotherapeutics, IgE glycosylation remains an area with limited analyses. Previous studies on the role of IgE glycosylation present conflicting data with one study emphasizing the importance of N275 and T277 residues for FcεRI binding whereas another asserts the nonsignificance of IgE glycosylation in receptor interaction. While existing literature underscores the significance of glycans at the N275 position for binding to FcεR1 receptor and initiation of anaphylaxis, the role of other IgE glycosylation sites in folding or receptor binding remains elusive. This study systematically investigates the functional significance of N‐linked glycosylation sites in the heavy chain of IgE which validates the pivotal role of N275 residue in IgE secretion and stability. Replacement of this asparagine to non‐amine group moieties does not affect IgE function in vitro, yet substitution with aspartic acid compromises antibody yield. The deglycosylated IgE variant exhibits superior efficacy, challenging the conventional importance of glycosylation for effector function. In summary, our study unveils an intricate relationship between N‐glycosylation sites and the structural–functional dynamics of IgE antibodies. Furthermore, it offers novel insights into the IgE scaffold, paving the way for the development of more effective and stable IgE‐based therapeutics.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3