Peptide Amphiphiles as Biodegradable Adjuvants for Efficient Retroviral Gene Delivery

Author:

Kaygisiz Kübra1ORCID,Rauch‐Wirth Lena2,Iscen Aysenur3ORCID,Hartenfels Jan1,Kremer Kurt3ORCID,Münch Jan2,Synatschke Christopher V.1ORCID,Weil Tanja1ORCID

Affiliation:

1. Department Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany

2. Institute of Molecular Virology Ulm University Medical Center Meyerhofstraße 1 89081 Ulm Germany

3. Polymer Theory Department Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany

Abstract

AbstractRetroviral gene delivery is the key technique for in vitro and ex vivo gene therapy. However, inefficient virion‐cell attachment resulting in low gene transduction efficacy remains a major challenge in clinical applications. Adjuvants for ex vivo therapy settings need to increase transduction efficiency while being easily removed or degraded post‐transduction to prevent the risk of venous embolism after infusing the transduced cells back to the bloodstream of patients, yet no such peptide system have been reported thus far. In this study, peptide amphiphiles (PAs) with a hydrophobic fatty acid and a hydrophilic peptide moiety that reveal enhanced viral transduction efficiency are introduced. The PAs form β‐sheet‐rich fibrils that assemble into positively charged aggregates, promoting virus adhesion to the cell membrane. The block‐type amphiphilic sequence arrangement in the PAs ensures efficient cell‐virus interaction and biodegradability. Good biodegradability is observed for fibrils forming small aggregates and it is shown that via molecular dynamics simulations, the fibril‐fibril interactions of PAs are governed by fibril surface hydrophobicity. These findings establish PAs as additives in retroviral gene transfer, rivalling commercially available transduction enhancers in efficiency and degradability with promising translational options in clinical gene therapy applications.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3