Immune Cell‐Based Microrobots for Remote Magnetic Actuation, Antitumor Activity, and Medical Imaging

Author:

Dogan Nihal Olcay12ORCID,Suadiye Eylül3,Wrede Paul12,Lazovic Jelena1,Dayan Cem Balda1ORCID,Soon Ren Hao12,Aghakhani Amirreza14,Richter Gunther3,Sitti Metin125ORCID

Affiliation:

1. Physical Intelligence Department Max Planck Institute for Intelligent Systems 70569 Stuttgart Germany

2. Institute for Biomedical Engineering ETH Zurich Zurich 8092 Switzerland

3. Materials Central Scientific Facility Max Planck Institute for Intelligent Systems 70569 Stuttgart Germany

4. Institute of Biomaterials and Biomolecular Systems University of Stuttgart 70569 Stuttgart Germany

5. School of Medicine and College of Engineering Koç University Istanbul 34450 Turkey

Abstract

AbstractTranslating medical microrobots into clinics requires tracking, localization, and performing assigned medical tasks at target locations, which can only happen when appropriate design, actuation mechanisms, and medical imaging systems are integrated into a single microrobot. Despite this, these parameters are not fully considered when designing macrophage‐based microrobots. This study presents living macrophage‐based microrobots that combine macrophages with magnetic Janus particles coated with FePt nanofilm for magnetic steering and medical imaging and bacterial lipopolysaccharides for stimulating macrophages in a tumor‐killing state. The macrophage‐based microrobots combine wireless magnetic actuation, tracking with medical imaging techniques, and antitumor abilities. These microrobots are imaged under magnetic resonance imaging and optoacoustic imaging in soft‐tissue‐mimicking phantoms and ex vivo conditions. Magnetic actuation and real‐time imaging of microrobots are demonstrated under static and physiologically relevant flow conditions using optoacoustic imaging. Further, macrophage‐based microrobots are magnetically steered toward urinary bladder tumor spheroids and imaged with a handheld optoacoustic device, where the microrobots significantly reduce the viability of tumor spheroids. The proposed approach demonstrates the proof‐of‐concept feasibility of integrating macrophage‐based microrobots into clinic imaging modalities for cancer targeting and intervention, and can also be implemented for various other medical applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3