Polymerized Salicylic Acid Microparticles Reduce the Progression and Formation of Human Neutrophil Extracellular Traps (NET)s

Author:

Brannon Emma R.1,Piegols Logan D.1ORCID,Cady Gillian2ORCID,Kupor Daniel1ORCID,Chu Xueqi1,Guevara M. Valentina1,Lima Mariana R.N.3,Kanthi Yogendra24ORCID,Pinsky David J.2ORCID,Uhrich Kathryn E.3ORCID,Eniola‐Adefeso Omolola15ORCID

Affiliation:

1. Department of Chemical Engineering University of Michigan 2800 Plymouth Road, NCRC B28 Ann Arbor MI 48109 USA

2. Division of Cardiovascular Medicine Samuel and Jean Frankel Cardiovascular Center University of Michigan Ann Arbor MI 48109 USA

3. Department of Chemistry University of California Riverside Riverside CA 92521 USA

4. Section of Vascular Thrombosis & Inflammation Division of Intramural Research National Heart Lung and Blood Institute Bethesda MD 20892 USA

5. Department of Biomedical Engineering University of Michigan Ann Arbor MI 48109 USA

Abstract

AbstractNeutrophils can contribute to inflammatory disease propagation via innate mechanisms intended for inflammation resolution. For example, neutrophil extracellular traps (NETs) are necessary for trapping pathogens but can contribute to clot formation and blood flow restriction, that is, ischemia. Currently, no therapeutics in the clinic directly target NETs despite the known involvement of NETs contributing to mortality and increased disease severity. Vascular‐deployed particle‐based therapeutics are a novel and robust alternative to traditional small‐molecule drugs by enhancing drug delivery to cells of interest. This work designs a high‐throughput assay to investigate the immunomodulatory behavior and functionality of salicylic acid‐based polymer‐based particle therapeutics against NETosis in human neutrophils. Briefly, this work finds that polymeric composition plays a role, and particle size can also influence rates of NETosis. Salicylate‐based polymeric (Poly‐SA) particles are found to functionally inhibit NETosis depending on the particle size and concentration exposed to neutrophils. This work demonstrates the high throughput method can help fast‐track particle‐based therapeutic optimization and design, more efficiently preparing this innovative therapeutics for the clinic.

Funder

National Science Foundation Graduate Research Fellowship Program

Dr. Ralph and Marian Falk Medical Research Trust

National Heart, Lung, and Blood Institute

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3