Dielectrophoretic Capture of Cancer‐Derived Small‐Extracellular‐Vesicle‐Bound Janus Nanoparticles via Lectin–Glycan Interaction

Author:

Choi Yonghyun12,Akyildiz Kubra3,Seong Jihyun4,Lee Yangwoo3,Jeong Eunseo12,Park Jin‐seok5,Lee Don Haeng5,Kim Kyobum4,Koo Hyung‐Jun3,Choi Jonghoon12ORCID

Affiliation:

1. School of Integrative Engineering Chung‐Ang University Seoul 06974 Republic of Korea

2. Feynman Institute of Technology Nanomedicine Corporation Seoul 06974 Republic of Korea

3. Department of Chemical and Biomolecular Engineering Seoul National University of Science and Technology Seoul 01811 Republic of Korea

4. Department of Chemical & Biochemical Engineering Dongguk University Seoul 04620 Republic of Korea

5. Department of Internal Medicine Inha University School of Medicine Incheon 22212 Republic of Korea

Abstract

AbstractGlycosylation is closely related to cellular metabolism and disease progression. In particular, glycan levels in cancer cells and tissues increase during cancer progression. This upregulation of glycosylation in cancer cells may provide a basis for the development of new biomarkers for the targeting and diagnosis of specific cancers. Here, they developed a detection technology for pancreatic cancer cell‐derived small extracellular vesicles (PC‐sEVs) based on lectin–glycan interactions. Lectins specific for sialic acids are conjugated to Janus nanoparticles to induce interactions with PC‐sEVs in a dielectrophoretic (DEP) system. PC‐sEVs are selectively bound to the lectin‐conjugated Janus nanoparticles (lectin–JNPs) with an affinity comparable to that of conventionally used carbohydrate antigen 19‐9 (CA19‐9) antibodies. Furthermore, sEVs‐bound Lectin–JNPs (sEVs‐Lec‐JNPs) are manipulated between two electrodes to which an AC signal is applied for DEP capture. In addition, the proposed DEP system can be used to trap the sEVs–Lec–JNP on the electrodes. Their results, which are confirmed by lectin–JNPs using the proposed DEP system followed by target gene analysis, provide a basis for the development of a new early diagnostic marker based on the glycan characteristics of PC‐sEVs. In turn, these novel detection methods could overcome the shortcomings of commercially available pancreatic cancer detection techniques.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3