Ultrathin 2D Pd/Cu Single‐Atom MOF Nanozyme to Synergistically Overcome Chemoresistance for Multienzyme Catalytic Cancer Therapy

Author:

Guan Xiaowen1,Ge Xiyang1,Dong Hongliang2,Wei Juanjuan1,Ouyang Jin3,Na Na1ORCID

Affiliation:

1. Key Laboratory of Radiopharmaceuticals Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 China

2. Department Center for High Pressure Science and Technology Advanced Research Shanghai 201203 China

3. Department of Chemistry College of Arts and Sciences Beijing Normal University at Zhuhai Zhuhai 519087 China

Abstract

AbstractSingle‐atom nanozymes (SAzymes) have obtained increasing interest to mimic natural enzymes for efficient cancer therapy, while challenged by chemoresistance from cellular redox homeostasis and the interface of reductive species in tumor microenvironment (TME). Herein, a dual single‐atomic ultrathin 2D metal organic framework (MOF) nanosheet of multienzyme (Pd/Cu SAzyme@Dzy) is prepared to synergistically overcome chemoresistance for multienzyme enhanced cancer catalytic therapy. The Pd SAzyme exhibits peroxidase (POD)‐like catalytic activity for overcoming chemoresistance via disturbing cellular redox balance. This is further enhanced by cascade generation of more ∙OH via Cu+‐catalyzed POD‐like reactions, initiated by in situ‐reduction of Cu2+ into Cu+ upon GSH depletion. This process can also avoid the consumption of ∙OH by endogenous reductive GSH in TME, ensuring the adequate amount of ∙OH for highly efficient therapy. Besides, the DNAzyme is also delivered for gene therapy of silencing cancer‐cell‐targeting VEGFR2 protein to further enhance the therapy. Based on both experiments and theoretical calculations, the synergetic multienzyme‐based cancer therapy is examined and the enhancement by the cascade tumor antichemoresistance is revealed.

Funder

National Natural Science Foundation of China

Beijing Synchrotron Radiation Facility

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3