Affiliation:
1. Center for Human Tissues and Organs Degeneration Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 P. R. China
2. Department of Critical Care Medicine Shenzhen Longhua District Central Hospital Shenzhen 518000 P. R. China
3. R&D Department Shenzhen Healthemes Biotechnology Co. Ltd Shenzhen 518102 P. R. China
4. Department of orthopedics Tongji Hospital School of Medicine Tongji University Shanghai 200065 China
Abstract
AbstractActivation of coagulation cascades, especially FX and prothrombin, prevents blood loss and reduces mortality from hemorrhagic shock. Inorganic salts are efficient but cannot stop bleeding completely in hemorrhagic events, and rebleeding carries a significant mortality risk. The coagulation mechanism of biominerals has been oversimplified in the past two decades, limiting the creation of novel hemostats. Herein, at the interface, the affinity of proteins, the protease activity, fibrinolysis, hydration shell, and dynamic microenvironment are monitored at the protein level. Proteomic analysis reveals that fibrinogen and antithrombin III's affinity for kaolin's interface causes a weak thrombus and rebleeding during hemostasis. Inspiringly, amorphous bioactive glass (BG) with a transient‐dynamic ion microenvironment breaches the hydration layer barrier and selectively and slightly captures procoagulant components of kiniogen‐1, plasma kallikrein, FXII, and FXI proteins on its interface, concurrently generating a continuous biocatalytic interface to rapidly activate both intrinsic and extrinsic coagulation pathways. Thus, prothrombin complexes are successfully hydrolyzed to thrombin without platelet membrane involvement, speeding production of high‐strength clots. This study investigates how the interface of inorganic salts assists in coagulation cascades from a more comprehensive micro‐perspective that may help elucidate the clinical application issues of kaolin‐gauze and pave the way to new materials for managing hemorrhage.
Funder
National Natural Science Foundation of China
Science, Technology and Innovation Commission of Shenzhen Municipality
China Postdoctoral Science Foundation
Subject
Pharmaceutical Science,Biomedical Engineering,Biomaterials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献